A JOURNAL OF HIGHWAY RESEARCH

UNITED STATES DEPARTMENT OF AGRICULTURE BUREAU OF PUBLC ROADS

VOL. 13, NO. 12
FEBRUARY, 1933

PUBLIC ROADS
 - A Journal of Highway Research

Issued by the
UNITED STATES DEPARTMENT OF AGRICULTURE
BUREAU OF PUBLIC ROADS
G. P. St. CLAIR, Editor

February, 1933

The reports of research published in this magazine are necessarily qualified by the conditions of the tests from which the data are obtained. Whenever it is deemed possible to do so, generalizations are drawn from the results of the tests; and, unless this is done, the conclusions formulated must be considered as specifically pertinent only to the described conditions.

In This Issue

A Survey of Highway Transportation in Michigan
ence185

Motor Tourist Traffic in Michigan
Moristranc 197
THE BUREAU OF PUBLIC ROADS Willard Building, Washington, D. C.REGIONAL HEADQUARTERS Mark Sheldon Building, San Francisco, Calif.
DISTRICT OFFICES

DISTRICT No. 1. Oregon, Washington, and Montana. Post Office Building, Portland, Oreg.

DISTRICT No. 2. California, Arizona, Nevada, and Hawaii.
Mark Sheldon Building, 461 Market St., San Francisco, Calif.
DISTRICT No. 3. Colorado, New Mexico, and Wyoming.
237 Custom House, Nineteenth and Stout Sts., Denver, Colo.
DISTRICT No. 4. Minnesota, North Dakota, South Dakota, and Wisconsin. 410 Hamm Building, St. Paul, Minn.

DISTRICT No. 5. Iowa, Kansas, Missouri, and Nebraska.
Eighth Floor, Saunders-Kennedy Building, Omaha, Nebr.
DISTRICT No. 6. Ar'kansas, Louisiana, Oklahoma, and Texas.
1912 Fort Worth National Bank Building. Fort Worth, Tex

DISTRICT No. 7. Illinois, Indiana, Kentucky, and Michigan. South Chicago Post Office Building, Chicago, III.
DISTRICT No. 8. Alabama, Georgia, Florida, Mississippi, South Carolina, and Tennessee.

Shepherd Building, Montgomery, Ala.
DISTRICT No. 9. Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont.

Federal Building. Troy, N. Y.
DISTRICT No. 10. Delaware, Maryland, North Carolina, Ohio, Pennsylvania, Virginia, and West Virginia.

Willard Building. Washington, D. C.
DISTRICT No. 11. Alaska.
Room 419, Federal and Territorial Building, Juneau, Alaska.
DISTRICT No. 12. Idaho and Utah.

Federal Building. Ogden, Utah.

Because of the necessarily limited edition of this publication it will be impossible to distribute it free to any persons or institutions other than State and county officials actually engaged in planning or constructing public highways, instructors in highway engineering, and periodicals upon an exchange basis. Others desiring to obtain Public Roads can do so by sending $\$ 1$ per year (foreign subscription $\$ 1.50$) to the Superintendent of Documents, United States Government Printing Office, Washington, D. C.

A SURVEY OF HIGHWAY TRANSPORTATION IN MICHIGAN

A REPORT OF HIGHWAY USAGE UPON TRUNK LINE, COUNTY AND TOWNSHIP HIGHWAYS AND UPON CITY STREETS OF MICHIGAN DURING 1930 AND 1931

By the Bureau of Public Roads, United States Department of Agriculture and the Michigan Highway Department

THE results of a study of highway traffic upon township, county, and trunk-line highway systems and upon city streets within the State of Michigan are given in this report. The survey was conducted under a cooperative research agreement between the Bureau of Public Roads of the United States Department of Agriculture and the Highway Department of the State of Michigan.

The work was under the general supervision of E . W. James, Chief of the Division of Highway Transport of the Bureau of Public Roads, and Grover C. Dillman, State Highway Commissioner of Michigan. The project was directly in charge of L. E. Peabody, senior highway economist, assisted by C. B. Bishop, H. E. Cunningham, D. O'Flaherty, and L. S. Tuttle, all of the Division of Highway Transport.

OBJECTIVES OF THE SURVEY

The tendency of States to concentrate control of highways has greatly advanced within the last year. A system of dividing road construction or maintenance among small units of Government has resulted in inefficient use of road machinery, lack of financial ability to obtain technical direction and difficulty in coordinating highway improvements among adjacent governmental units. The interchange of traffic between township, county, and trunk-line systems and city streets produces a situation which requires the highest type of cooperation among administrative forces representing each system if efficient results are to be obtained.

Organization for the use of mass-production methods on secondary highways has taken various forms. In 1931 the Department of Highways of Pennsylvania assumed direct responsibility for more than 20,000 miles of secondary highway. Michigan legislation in the same year provided for gradual absorption of all township highways by the counties, with a financial grant to the counties from State highway funds, and with a measure of supervision of their expenditure by the highway department. North Carolina has placed all highways of the State under direct control of her highway commission. Virginia has made provision for the absorption of county highways by the State, effective July 1, 1932. A recommendation that county
maintenance of all of the highways within the State may be stated on the basis of facts obtained in extensive traffic surveys.

The Michigan transport survey is the first in which the traffic on all these highway systems-city streets, trunk lines, county highways, and township roads-has been simultaneously studied. Traffic of local and of nonlocal cars on each of these highway systems was observed at over 1,000 points covering approximately 4,000 sections of highway throughout a full year. In studying a township the use of trunk-line, county, and township roads of the township by cars owned within and outside of the township was obtained. In the case of the county, traffic use of the county and trunk-line systems by owners within and without the county was obtained.

Data as to use of city streets by local and nonlocal traffic were gathered at more than 400 points within the seven cities of Detroit, Grand Rapids, Flint, Lansing, Jackson, Ann Arbor, and Niles.

The primary objective of the survey was to obtain data indicative of the character and amount of use of the township, county, and trunk-line highways, and city streets.
A secondary objective was to obtain information on the tourist traffic in Michigan, its origin, the number of tourists and tourist cars, the length of stay, the mileage traveled, the types of accommodation used by tourists, and the value of tourist traffic to the State. It was also desired to determine the volume of city traffic dur-

Figure 1.-Location of Traffic Stations in Southern Peninsula
ing peak hours of travel, total street widths, effective street widths after making deductions for parked vehicles, safety zones and other obstructions, and the presence of street-car tracks.

The material relating to tourist traffic appears separately in this issue (see p. 197). The detailed study of city traffic is omitted from this report because of lack of space.

SELECTION AND OPERATION OF TRAFFIC SURVEY STATIONS

Within the State of Michigan at the start of the survey were approximately 60,000 miles of township road, 17,000 miles of county highway, 8,000 miles of trunk line, and many thousand miles of city streets. The entire township road mileage was under the jurisdiction of 1,269 township units, while 83 counties administered their respective road systems, and the State highway department constructed and maintained all trunk-line highways.

It was impractical to operate traffic survey stations upon each mile, or even upon each section of this mileage. The townships were classified into 79 homogeneous groups according to the road mileage, types of roads, assessed valuation, and population. An average township within each group was selected as representative of the group and traffic stations were distributed within each such sample township so as to obtain adequate traffic data with respect to all classifications of highway, as well as all volumes of traffic. Stations were established at typical intersections of two township roads; a county road and a township road; two county roads; a trunk-line route with either a township or a county road; and at such additional points as to cover each route of travel within the township.

In each of the cities traffic survey stations were located at intersections where the data obtained would be representative of the traffic within the area. In general, these were located upon a cordon circumscribing the city, located at or near the city limits and controlling all of the major traffic routes. In addition, other stations were located within the interior of the city to obtain an accurate sample of all traffic movements within the area. These points were selected with the assistance of the city engineer or traffic engineer of the particular city. In the city of Detroit the stations adopted by the Rapid Transit Commission in their study of vehicular traffic and reported in 1930 were used.

A list of the townships comprising each group, with the "sample" township indicated, has been prepared in mimeograph form and may be obtained on request addressed to the Bureau of Public Roads. The location of the city stations is dealt with in the section of the report concerned with city traffic.

The information of major importance obtained at survey stations had reference to the origin of each vehicle. On all township roads, county roads, and trunk-line routes separately, each vehicle was placed in one of the following classes: Truck up to and including $1 \frac{1}{2}$ tons, truck over $1 \frac{1}{2}$ tons, passenger car, bus, or trailer. Each type of vehicle was further classified as to whether the owner lived within the township in which the survey station was located. If ownership was not in the township, the vehicle was classified either as owned within the county in which the station was located, elsewhere in the State of Michigan, or as a vehicle from outside the State. The "township," "county," and "State" vehicles, as defined in the foregoing, were further subdivided into those of urban ownership and those of rural ownership. Foreign vehicles were listed without regard to urban or rural ownership.

Collection of these data necessitated the stopping of all vehicles for questioning, or upon routes where traffic was too heavy to permit the stopping of vehicles, the taking of a complete density count of vehicles and a list of all registration tag numbers. These numbers were
classified by means of the Michigan Department of State records showing residence of each licensee. The method of classification of vehicles at such stations was identical with that at the stations where it was possible to stop traffic. In all cases where it was impracticable to stop cars, a minimum of approximately 2,000 license tag numbers was secured during a 10 -hour period and the results applied to the complete density count of vehicles over the same period. There resulted a minimum classification by means of tag numbers of 20 per cent of all vehicles passing the station and a 100 per cent classification at all but the heaviest traffic stations.

At the survey stations located within the cities vehicles were classified by means of the tag numbers as described above. The classification of vehicles was less elaborate at these stations, cars being separated into "city" and "noncity" classifications. A "city" or "local" car was defined as one owned within the city where the station was located, all other cars were classified as "noncity" or "nonlocal." In addition, traffic during the peak hour of travel was tallied separately at all city stations, and data were obtained for each adjacent street with regard to actual street width, effective street width, width of parking space, number of traffic lanes, street-car tracks, traffic lights, and other pertinent data about the intersection as related to traffic movement.

VOLUME AND ORIGIN OF TRAFFIC ON THE DIFFERENT CLASSES OF RURAL ROUTES

The location of the survey stations upon the rural routes of the southern peninsula is shown in Figure 1. Limitations in the size of the publication and the vast mileage of rural highway, totaling approximately 85,000 miles, prohibit the presentation of all of the rural road mileage. The maps show the location of the townships selected for intensive traffic analysis, the approximate location of the township stations within each such sample township, and the location of all stations upon the trunk-line routes. The number of all classes of vehicles observed during the period July, 1930, to July, 1931, upon the rural highways totaled nearly $12,000,000$. Upon city streets more than $19,000,000$ cars were counted and classified.
Figure 2 shows the flow of motor vehicles upon all trunk-line routes represented to scale. The data include average daily 24 -hour traffic throughout the year and, in broken line, the average maximum daily traffic.
There is considerable monthly variation in traffic from the average monthly traffic of all types of vehicles. The traffic ranged from 64 per cent of the average in January to 148 per cent in August. The variation was greater for passenger cars - from 61 to 153 per centthan for light trucks, with 79 per cent in January and 131 per cent in October. Bus traffic was more stable than that of any other type of vehicle, varying from 92 per cent in February to 114 per cent in October. Between local highways and trunk-line routes the differences in the range were small. The lightest volume of traffic on the trunk lines was in January, and in February on both county and township highways. On the respective systems the percentages were 63,69 , and 65 of the average monthly traffic. The high month on each system was August with 148 per cent for the trunk lines, and 150 and 144 per cent for county and township highways, respectively. There

H EQUALS 5,000 VEHICLES AVERAGE MAXIMUM
DAILY TRAFFIC
was great similarity in variation by days of the week on all three systems, Sunday being the heaviest day, with about 140 per cent of the average daily traffic.

Daily traffic averages within each sample township for each type of highway-township road improved and unimproved, county highways improved and unimproved, and trunk-line routes - separated by origin of the vehicle (within the township, within the county, within the State, and foreign) and for each type of vehicle (passenger cars, trucks up to and including $11 / 2$ tons, trucks over $13 / 2$ tons, trailers, and busses) were obtained from the station observations extending
throughout the year. These data tabulated without separation by place of origin, may be obtained in mimeograph form from the Bureau of Public Roads. The traffic averages so obtained were applied to the total mileage of each type of highway in the corresponding township groups, resulting in an average daily vehicle-mileage by origin of vehicles upon the several political classes of highway. These daily vehicle-miles and the mileages of the several classes of highway within the township groups are tabulated in Table 1. The figures are summarized and corresponding percentages given in Table 2.

TAble 1.-Average daily vehicle-miles on township, county and trunk-line highways of township groups, classified according to township, county, or other origin

Group of townships represented by-		Township roads in group	Travel on township roads from-			$\begin{gathered} \text { County } \\ \text { roads } \\ \text { in } \\ \text { group } \end{gathered}$	Travel on county roads from-			$\begin{aligned} & \text { Trunk- } \\ & \text { line } \\ & \text { roads } \\ & \text { in } \\ & \text { group } \end{aligned}$	Travel on trunk-line roads		
Township	County		Township	County	Other ${ }^{1}$		$\begin{aligned} & \text { Town- } \\ & \text { ship } \end{aligned}$	County	Other ${ }^{1}$		Town- ship ship	County	Other ${ }^{1}$
Ewing	Marque	$\begin{gathered} \text { Miles } \\ 251.0 \end{gathered}$	Vehiclemiles 9, 036	Vehiclemiles 251	Vehicle miles 1,757	$\begin{gathered} \text { Miles } \\ 3.5 \end{gathered}$	Vehicle miles 256	$\left\|\begin{array}{c} \text { Vehicle- } \\ \text { miles } \\ 200 \end{array}\right\|$	Vehiclemiles 203	$\begin{gathered} \text { Miles } \\ 0 . \end{gathered}$	Vehiclemiles	Vehiclemiles	Vehiclemiles
Wilson, B	Oceana-....-	311.1	1,822	1,565	1,627	1.4	102	80	81	5.3	975	1,378	3,583
Elk	Lake_..--	738.4	5,586	1,596	6,705	104.7	1,241	$\begin{aligned} & 895 \\ & 435 \end{aligned}$	$\begin{array}{r} 580 \\ 1,188 \end{array}$	18.2	200	382	619
Gourle	Menon	699.5	7,695	3,497	699	157.2	3, 616	1,415	314				
Logan	Mason	854.0	3, 322	1,350	1,599	176.5	2,462	3, 580	1,588	22.9	710	2,931	5,725
Maple Rid	Alpena	595.1	5, 115	1,988	697	158.6	6, 027	14, 274	9, 516	1.0	184	260	676
James	Saginaw	449.8	8,702	7, 352	449	133.3	9, 064	32, 259	3, 732	4.0	736	1,040	,704
Friendsh	Emmet	787.3	1,575	787	787	211.4	2, 5375	8,879	5, 285	6. 6	1,214	1,716	4,462
Mount F	Bay	974.5	6,822	5,847	4,872	303.1	27, 582	17,580	13,943	18.5	6,456	8,399	24,402
Flynn.	Sanilac	1,197.4	4,790	3, 592	1,197	388.3	17, 085	18,250	20, 192	17.2	1,858	2, 683	3,646
Montros	Genesee	1,126.1	22, 522	7,883	3,378	617.9	42, 635	64, 880	46, 960	10.7	535	10,657	20, 266
Reading	Hillsdale	991.2	19,702	6,898	3,965	516.0	44, 892	26,832	28, 380	29.7	5,584	3,950	4, 039
Hinton	Mecosta	616.0	3,610	934	934	186.4	6,710	3,728	8,761	6.9	1,270	1,794	4,664
Colum	Van Bur	786.4	7,443	1,573	3, 942	229.6	11, 939	12, 858	19,746	4.7	865	1,222	3, 177
Riley	Clinton	1,253. 3	18, 800	8,773	5, 013	532.1	20, 220	17, 559	18,091	9.3	484	2,046	6,017
Fulton.	Gratiot	1,231. 1	13, 164	2,336	1,784	506.2	31, 891	27, 335	43, 027	22.4	1,949	3, 584	3,942
Carlson, Hudso	Gogebic, Mackina	743.4	4, 835	1,020	1, 020	59.6	4, 351	3,397	3, 457	343.6	8,590	10,308	52,914
Secord.	Gladwin	841.5	9, 256	5,890	7, 574	32.3	2, 358	1, 841	1,873	149.1	3,728	8,797	14,910
Franklin	Houghton	792.6	11,889	10, 304	793	49.2	3, 592	2, 804	2,854	137.6	26,006	135, 261	33, 987
Southbranch	Crawford	485.4	485	485	485	95.2		190	476	156.3	2, 032	2,188	22, 820
Elmer, Manistic	Oscoda, School	706.6	2, 120	707	707	98.9	3, 659	989	692	115.0	24, 725	15. 065	25, 760
Warner	Antrim.	836.1	6,689	836	2, 508	124.7	748	1,496	2, 120	172.6	10,011	5,868	45,566
Lake	Roscommon	622.6	3, 113	1, 245	623	89.8	1,257	718	1,976	127.5	4, 335	5, 355	28,815
Forest	Cheboygan	760.8	9,130	1.522	5,326 1,415	115.0	6, 498	2.694	4,383	103.5	10,363	4,072	12,587
Arvon	Baraga	850.5	4, 919	4,157	1, 606	103.1	1,650	1,546	619	159.6	11, 491	5,905	- 3 , 192
Hatton	Clare	594.7	2,974	3, 568	1,784	131.7	1,185	2, 766	1,317	135.8	1,086	14, 123	52, 419
Reno.	Iosco	815.9	7, 343	2, 448	3,264	142.9	2, 429	857	1,143	147.6	27, 158	38,376	99, 778
Middle B	Osceola	1,077.1	4, 840	2,331	1,078	166.8	2,335	2, 502	1,334	137.4	3,847	8,519	24, 182
Gustin	Alcona	682.1	4,775	1,364	682	138.1	2, 072	552	276	154.5	7, 570	12, 669	21,476
Greenland.	Ontonagon	881.0	12, 334	881	881	200.6	38,716	6, 219	4,614	154.6	10,049	6,648	20,716
Pleasanton, B	Manistee, Iron	824.2	7,498	5,450	1,250	199.3	6,378	10, 962	3, 388	154.1	9, 708	32, 053	48,696
Dafter, Springv	Chippewa, Wex	635.1	3,342	635	, 635	249.7	14,483	26, 468	12, 235	100.7	11,782	7,855	9,264
Norway	Dickinso	1, 478.5	22, 178	2,957	1,478	407. 4	10, 592	2,852	815	237.2	251, 906	96, 778	91,085
Palmyra	Lenawee	780.9	11,284	6, 848	1,845	280.3	23, 265	72, 598	28,310	112.6	12,836	76, 230	131, 855
Saint Ch	Saginaw	566.1	5,962	2, 414	1,132	125. 2	6,886	13, 772	15, 650	139.3	10,587	22, 288	22, 149
Martine	Mecosta	751.6	5,178	2,756	2, 088	120. 4	2,649	3,612	2, 528	79.5	1,192	7,950	12, 164
Empire	Leelanau	717.7	2,992	1,314	2,032	163.6	4,090	4, 254	9, 816	128.3	4, 106	3, 336	7,698
Mattison	Branch	1,110.0	12,210	6,660	4,440	261.0	6, 003	10, 179	8,091	145.6	5, 533	8,736	19,947
Almena.	Van Buren	1,100. 1	16, 501	6,600	7,086	223.5	20, 940	5,797	18, 484	145.8	7,727	22, 891	34,992
Riverside	Missaukee	1,033. 1	5,821	1, 251	1,907	203.8	4, 484	2, 038	2, 242	122.1	5,372	3, 175 .	14,652
Mount Haley	Midland.	1,060. 6	10,606	4, 516	3,181	270.8	5, 958	3, 250	3, 791	114.8	2,066	4,822	12, 398
Pierson-	Montcalm	833.1	12, 477	3, 269	22, 004	399.4	8,787	10,384	8,787	135.0	12, 420	19,170	157, 680
Barry	Barry	964.6	18, 327	3,858	10,821	309.7	25, 705	11, 769	37, 783	137.1	16, 863	21, 388	74, 034
Athens	Calhou	1,014.5	10, 145	3, 044	2, 029	287.5	12,015	5, 150	7,475	132.3	19,051	31, 752	27,386
Pokago	Cass	1, 140.0	19,380	10, 260	5,700	269.2	8,076	6,461.	9,960	186. 3	13,600	56, 263	153, 884
Rush	Shiawas	1,973.6	13, 738	2,948	1,473	379.7	20, 884	18,985	7,974	117.4	19, 019	59, 404	72, 084
Ionia	Ionia	932.1	16,066	4,749	2,234	340.5	91, 594	30,645	36, 774	141.1	79, 016	31, 606	101, 874
Springport	Jackson.	788.3	11, 129	3, 200	5, 565	253.7	14, 461	8,880	13, 700	139.6	9,353	8, 655	22,476
Fenton	Genesee	827.9	37, 150	17, 762	7, 240	349.2	60, 062	49, 237	36, 666	122.8	78,838	112, 485	64,470
Saline	Washtenaw	965.5	19, 310	5,793	4, 828	292.5	28, 958	8, 190	18,428	160.2	${ }^{21,627}$	35, 885	232, 931
Bangor	Van Buren	760.8	13,491	3, 057	2,554	350.1	21, 308	19, 256	21, 006	172.4	27, 929	35, 514	32,411
De Witt	Clinton	897.2	22, 209	3, 775	14,862	323.0	23, 256	16, 796	51, 034	153.0	27, 999	49,572	302, 634
Farmingto	Oakland.	607.1	24, 154	4, 228	13, 920	423.5	59, 290	61, 408	158,812	163.4	89, 707	66, 014	754, 908
Clyde.	Saint Cla	879.6	6,418	5, 050	880	223.5	3,800	6,258	1,341	106.5	5, 644	30, 140	16, 294
Moscow	Hillsdale	956.5	8,927	5, 101	2, 550	180.2	7,568	8,289	11, 172	83.6	5, 434	19, 228	168, 621
Goodland	Lapeer	654.0	7,372	2,788	3,277	238.0	8,806	6, 188	12, 376	79.6	2, 866	5,890	47, 282
Garfield.	Grand Traverse	740.2	21, 237	4,615	4,980	195. 1	31,606	10, 330	15, 023	105.2	60, 806	19,778	97,100
Grand Ha	Ottawa	1,453.0	23, 667	2,906	8,184	315.4	105, 559	33, 132	38,479	169.2	58, 205	38,916	191, 027
Danby	Ionia	834.5	13, 414	4, 173	6, 250	258.1	11,873	15, 744	17,035	104.0	5, 200	34, 736	228, 384
Burr Oak	St. Joseph	939.4	13, 098	5,438	2,249	271.4	16, 013	9,499	10,042	99.3	7,745	27, 010	147, 163
Ashland.	Newaygo	873.5	11, 874	1,582	3, 163	276.4	14, 373	3, 593	6, 634	118.5	24, 530	17,894	97, 881
Martin	Allegan.	969.7	26, 117	5, 098	4,286	314.8	41, 239	8,185	17, 314	76.6	16, 163	17,924	109, 232
Fairgrove	Tuscola	780.6	16, 025	3,357	1,289	206.7	16, 123	10, 542	6, 408	99.2	13,690	12,896	15, 178
Bridgeport	Saginaw	868.6	9, 878	6, 975	1,737	276.5	16,590	37, 604	14,931	108.3	15, 920	134, 400	269, 992
Independe	Oakland	665.3	9,248	4, 657	1,996	233.8	18,470	19, 172	12,625	138.7	17, 199	66, 853	266, 443
Handy	Livingst	652.3	13, 072	1,868	2, 801	270.3	21, 354	22, 165	11, 082	106.3	23, 173	16,476	276, 061
Winsor	Huron	677.0	19,760	7,105	2, 165	314.5	35, 224	32, 708	13, 838	115. 4	31,850	30,696	20,310
Byron.	Kent	665.6	21, 483	6, 974	3,407	279.6	45,556	44, 712	31, 303	123.6	8,776	133, 982	157, 096
Delhi	Ingham	594.1	14, 726	8,270	1,595	296.3	25,778	36, 149	8, 296	133.4	71,636	247, 857	155, 278
Muskegon	Muskegon	440.0	9, 240	440	440	420.6	61, 828	5, 047	3,785	125.4	136, 310	44, 642	65,459
Total		60,214.0	803, 814	279, 164	244, 823	17, 175.4	1, 273, 722	994,467	995, 918	7,690.9	1,442, 218	2, 044, 974	5, 317,464

[^0]Table 2.- Traffic upon township, county, and trunk-line highway systems originating within the township, within the county, or elsewhere

Road type	Origin	Daily vehiclemiles	Percent- age of total	Percentage of total traffic on rural roads
Township road.	$\left\{\begin{array}{l} \text { Township....... } \\ \text { County } \\ \text { Other } \end{array}\right.$	$\begin{aligned} & 803,814 \\ & 279,164 \\ & 244,823 \\ & \hline \end{aligned}$	$\begin{aligned} & 60.5 \\ & 21.0 \\ & 18.5 \end{aligned}$	9.9
		1,327, 801	100.0	
County road..	$\left\{\begin{array}{l} \text { Township....... } \\ \text { County } \\ \text { Other 1 } \end{array}\right.$	$\begin{array}{r} 1,273,722 \\ 994,467 \\ 995,918 \end{array}$	$\begin{aligned} & \hline 39.0 \\ & 30.5 \\ & 30.5 \end{aligned}$	24.4
		3, 264, 107	100.0	
Trunk line	$\left\{\begin{array}{l} \text { Township } \\ \text { County } \\ \text { Other } \end{array}\right.$	$\begin{aligned} & 1,442,218 \\ & 2,044,974 \\ & 5,317,464 \end{aligned}$	$\begin{aligned} & 16.4 \\ & 23.2 \\ & 60.4 \end{aligned}$	65.7
		8,804,656	100.0	
Total rural ro		13, 396, 564	------...-	100.0

${ }^{1}$ Includes vehicles from outside the State of Michigan.
Traffic on rural roads totals $13,400,000$ vehicle-miles per day. Sixty-six per cent of this traffic is carried by the trunk-line routes, which constitute 9 per cent of the rural mileage; 24 per cent of the traffic is carried by the county roads, which are 20 per cent of the rural mileage. The township highways carry but 10 per cent of the rural road traffic, although the mileage of township roads is 71 per cent of all rural mileage. The distribution of traffic by origin of vehicles varies widely between the three highway systems. Upon the township roads more than 60 per cent of the traffic originates within the local township and more than 81 per cent within the local county, while upon trunk-line routes more than 80 per cent of the traffic originates at points outside the township in which the station is located, and more than 60 per cent at points outside the county. Traffic volumes per day averaged 22 vehicles upon the township roads, 190 vehicles on county roads and 1,144 vehicles upon the trunk-line routes.

Township roads are a relatively small factor in the total traffic movement, producing but one-tenth of the total vehicle-miles, with more than 60 per cent of the township road usage originating within the township.

USE OF RURAL ROADS BY MICHIGAN VEHICLES OF CITY AND RURAL OWNERSHIP

It will be recalled that cars originating at points outside Michigan were classified by field recorders simply as "foreign" without separation into vehicles of city or rural ownership. All cars bearing Michigan tags were classified with respect to city or rural awnership.

Using the method previously described for obtaining traffic volumes by unit of origin, data for Michigan vehicles divided between cars owned within the cities and those rurally owned are tabulated in Table 3. These data are further condensed for convenience in Table 4.

Two-thirds of the usage of township roads is by cars owned rurally, and this ratio declines to 44 per cent upon county roads and to 19 per cent upon the trunkline system. City-owned cars produce nearly 70 per cent of the traffic upon the rural highway system, and nearly 75 per cent of their travel is upon the trunk-line system.
Approximately 5 per cent of the travel of city-owned cars is upon the township road system. But a small
portion of the average trip of a city-owned car is over the township roads, and the use of county highways by the city dweller is about four times as great as his use of the township roads.

USE OF RURAL HIGHWAYS BY FOREIGN TRAFFIC

Motor vehicles from States other than Michigan use the trunk-line routes of the rural highways almost exclusively. Foreign vehicles produce a total of $1,115,752$ vehicle-miles per day upon the rural highway systems. Nearly 86 per cent of all foreign traffic is carried by the trunk-line system, and approximately one per cent of the foreign traffic is carried by the township roads of Michigan. Detailed figures are presented in Table 5.

Slightly over 8 per cent of all travel upon the rural highways is by foreign vehicles. They constitute 10.8 per cent of the use on trunk lines, 4.5 per cent upon the county highways, and 1.1 per cent on township roads.

LOCAL AND NONLOCAL TRAFFIC ON CITY STREETS

The total use of city streets, expressed in vehiclemiles, was developed from the figures of gasoline consumption of the State. These figures indicate a total consumption of $725,386,562$ gallons from July 15, 1930, to July 15, 1931, the dates of the survey. Replies to more than 5,000 questionnaires, distributed to motorists throughout the State during the period of the survey, in connection with a study of the highway finance of the State, give an arerage travel of 13.4 miles per gallon for all types of vehicle. Applying this average mileage per gallon to the indicated consumption within Michigan and reducing the resulting quantity to a daily basis, the average daily travel upon all rural roads and city streets is $26,600,000$ vehicle-miles. From this figure may be taken the average daily vehicle mileage upon rural roads, $13,400,000$, leaving an average daily use of city streets of $13,200,000$ vehicle-miles.

Traffic in each city is composed of two important elements - the movement of vehicles owned within the city, or local traffic, and the movement of vehicles owned elsewhere, or nonlocal traffic.

In order to effect this separation of city traffic, 7 cities ranging in population from 10,000 to more than $1,500,000$ were selected for field observation and classification of the traffic moving within them. The sample cities were Detroit, Grand Rapids, Flint, Lansing, Jackson, Ann Arbor, and Niles. A complete statement of detailed methods and results of this study is published in an appendix. Briefly, the city traffic survey involved a selection of more than 400 stations at which license tag numbers were recorded and later classified as to residence of the owners by reference to registration records. In the determination of the percentage of local use, the data collected on through streets and on local streets were analyzed separately. The percentages of local and nonlocal use in each city were computed separately for through and local streets and the results weighted by the relative mileages of each class of city streets. The results are shown in Table 6.

Examination of this table discloses that there is a uniform increase in the percentage of local traffic with increase in the size of city, both on through and nonthrough streets; that the percentage of local traffic on nonthrough streets is considerably in excess of the percentage upon through streets and that the differentials, in percentages of local use, between through and nonthrough streets are considerably lessened as the size of the city increases.

TABLE 3.- Average daily vehicle-miles on township, county, and trunk-line roads of tounship groups classifict according to rural or city origin

Table 4.--Traffic of Michigan vehicles on rural highways by class of highway and situs of ownership

Highway type	Situs of ownership	Daily ve-hicle-miles	Percentage
Township road.	$\left\{\begin{array}{l}\text { City }\end{array}\right.$	429, 387	32.7
		1,733, 256	57.6
County road	\{ Rural	1, 384, 819	44.4
Trunk line	Sity	6, 393, 132	81.4
Total rural roads.	fity	8, 555, 775	69.7
Potal rutal roads.	QRural	3, 725, 037	30.3

Table 5.-Daily use of rural highways by Michigan and nonMichigan vehicles

Highway type	Taily vehicle-miles					Per-centage of foreign rehiclemiles
	Foreign vehicles	Per-centage	Michigan vehicles	$\begin{aligned} & \text { Per- } \\ & \text { cent- } \\ & \text { age } \end{aligned}$	Total	
Township road	14, 613	1.3	1,313, 188	10.7	1, 327, 801	1.1
County road.	146.0322	13.1	3. 118,075	25.4	3, 26it, 107	4.5
Trunk line	955, 107	85.6	7. 849,549	63.9	8. 801, 655	10. x
Total.	1, 115, 752	1000	12, 280, 812	100.0	13, 396, 564	8.3

Table 6.-Origin of traffic on through and local streets in seven Michigan cities

Exclusive of traffic from outside the State.
The seven cities contain approximately 63 per cent of the Michigan urban population and it was necessary to estimate the percentages of local and nonlocal use for the remaining 37 per cent upon the basis of the data obtained in the seven cities. This was done by examining the relationship between the population of the cities and the percentage of local use and, as a check, establishing the relationship between the ratio of through streets to total street mileage of each city and the percentage of local use. Both of these relationships are fully discussed in the appendix. Combining the estimates of local use obtained by these relationships with the percentages observed in the seven sample cities resulted in an average local use in all cities of Michigan amounting to 69 per cent of the total urban traffic of the State. A separation of the total urban traffic of $13,200,000$ daily vehicle-miles upon this basis, results in local use of city streets of $9,100,000$ daily vehicle-miles and nonlocal use of $4,100,000$ daily vehicle-miles.

TRAFFIC DATA SUMMARIZED

As a summary of the facts brought out in the preceding pages, the data on rural roads in Table 2 are repeated in Table 7, and combined with the figures obtained for traffic on city streets, so as to show the relative distribution of local and non-local traffic on the different classes of highway.

The predominantly local character of the township roads is indicated by the 60.5 per cent of traffic on these roads which originates within the township, while only 18.5 per cent comes from outside the county. Similarly 69.5 per cent of the traffic on county roads is by vehicles originating within the county. That the trunk-line roads are essentially arteries of through traflic is demon-

Table 7.-Traffic on each class of highway m Michigan distributed according to origin or character

strated by the 60.4 per cent of the traffic on these roads oricinating outside of the county.

Table 4 shows that 81.4 per cent of the traffic of Michigan vehicles on the trunk-line roads, or 6,393,132 daily vehicle-miles, is of city origin. The total population of incorporated areas in Michigan in 1930 was $3,596,394$, or 74 per cent of Michigan's population of 4,842,325. These facts indicate that residents of cities use the trunk-line roads to a slightly greater extent than the inhabitants of rural areas. However, the percentages are not greatly different, and they further emphasize the general character of the trunk-line roads.

On the city streets 31 per cent of the traffic, amounting to about $4,100,000$ vehicle-miles per day, is of nonlocal origin. Part of this traffic is by vehicles from other cities and part by vehicles of rural origin. It would be useless to estimate these fractions, although the predominance of city traffic on the trunk lines suggests that the greater portion of the nonlocal city traffic comes from other cities. The traffic of city vehicles on township and county roads is shown in Table 4 to be 2,162,643 vehicle-miles per day, which is approximately half of the nonlocal traffic on city streets. It seems probable from these facts that the use of city streets by rural residents is not greatly different from the use of local rural roads by city residents, while the use of the trunk lines by the two classes of residents is approximately in the proportion of urban and rural population.

STREET AND HIGHWAY EXPENDITURES IN MICHIGAN

Financial data relating to highway expenditures in Michigan are not available for a period concurrent with the period of the traffic survey, although actual expenditures for that period may be closely approximated by available data. The financial statement of the State Highway Department covers the period July 1, 1930, to June 30, 1931, inclusive. Corresponding data for the townships, counties and cities are available for the calendar year 1930 .

The records of the State Highway Department indicate total disbursements for the above-named period amounting to $\$ 45,582,894$. Of this total, $\$ 10,622,880$ represents direct payments of registration fees to the
counties, and $\$ 1,060,014$ represents direct payments to cities for maintaining and widening trunk-lines through the cities, leaving a net total of $\$ 33,900,000$ for construction, maintenance and overherd of the trunk-line highway system.

Replies to questionnaires sent to the counties give total receipts for highway purposes in the year 1930 of $\$ 32,376,706$, and highway expenditures during the same year amounting to $\$ 28,185,300$.
In the financial survey previously referred to, highway expenditures by local units covering the year 1930 were obtained. These figures show the expenditures for highways by townships and by five groups of incorporated places. They do not include the expenditures by the State, including Federal aid, or hy the counties. They are strictly local expenditures made by the townships and the incorporated places under their own direction, and they include expenditures made and assessed against abutting property. These latter expenditures have not been usually included in the highway and street expenditures as commonly totaled for a State, so that the figures for Michigan are very much larger than those commonly published, but it has been assumed that assessments for street improvements, or rather expenditures for street improvements to be later collected from abutting property, are highway expenditures for that year within the meaning of the term.

A recapitulation of the net expenditures for highway purposes by units of Government is as stated in Table 8.

Table 8.-Expenditures for highways by units of government during a 1-year period in 1930-31
Governmental unit:

$$
\begin{array}{cr}
\text { State } & \$ 45,582,894 \\
\text { Less payments to counties } & 10,622,880 \\
\text { Less payments to cities_-. } & 1,060,014
\end{array}
$$

Counties
Townships
Cities
$\$ 33,900,000$
28, 185, 300
6, 264, 384

Total
37, 822, 997

The expenditures listed in Table 8 are not annual highway costs, as they include capital expenditures as well as current items. Payments of bond principal are not included. State Highway Department expenditures during the years 1925 to 1929 ranged from 22 millions to 34 millions of dollars and averaged $\$ 26,600,-$ 000 per year. Expenditures for local highways during this period ranged from 21 millions to 43 millions of dollars and averaged $\$ 34,200,000$ per year.
On the basis of the expenditures shown in Table 8 and the total annual traffic on each system, the expenditures per vehicle-mile on each of the highway systems of the State, including city streets, were computed and are as given in Table 9 . It will be observed that the

Table 9.-Expenditures per vehicle-mile in 1930-91 on the several highway systems of Michigan

Highway system		Expen- ditures per vehicle- mile	Annual vehi- ele-miles on system 1

[^1]average for all highways of the State, including city strecte, is 1.1 is cents per vehele-mile: and that the figures vary from 0.78 cent for city streets to 2.37 cents for county roads.

These expenditure figures, although they can not be regarded as true annual costs, offer a basis of comparison with the reduction in cost per vehicle-mile in the operation of motor vehicles, effected by the improrement of roads. Data on this subject were developed in experiments by Prof. T. R. Agg, and reported in Bulletin 69 of the Engineering Experiment Station, Lowa State College, in 1924. Professor Agg's figures indicate that the average cost of operating an automobile over a high-type surface such as concrete, brick, or asphalt is approximately $2 \frac{1}{2}$ cents per mile less than the cost of operating over an ordinary earth road. A low-type surface such as gravel reduces operating costs about 1 cent per vehicle-mile; an intermediate surface, such as bituminous macadam, about 2 cents. A well-packed earth road, as opposed to average or ordinary earth roads, was shown to effect a reduction of about one-half cent per vehicle-mile

From these figures it is evident that the expenditure of 0.78 cent per vehicle-mile on city streets, with a high type of improvement and dense traffic, is more than justified by the reduction in cost of operation of motor vehicles. The same is true of the trunk-line roads, which have an average traffic density of 1,144 vehicles per day, On the city streets and trunk-line highways the expenditures listed are chiefly for construction, maintenance playing a relatively small part in the total.
The county roads, which are mainly of intermediate and low types, and on which maintenance expenditures become more important, present a different situation. The expenditures per vehicle-mile amount to 2.37 cents. The average density of traffic on the county roads is 190 vehicles per day. This rate of expenditure can hardly be justified from the standpoint of economy in motor vehicle operation; and the fact that expenditures per vehicle-mile on county roads are conspicuously higher than on any of the three other classes of highway suggests that they may be excessive. It may be that the mileage improved has been overextended or that the type of improvement has been too expensive, or that a combination of these two factors has led to the hioh rate. In this connection it is noted that in Michigan, according to the latest available figures, there are 77,389 miles of local road, of which 33,405 miles, or 43.2 per cent, are surfaced. More than 97 per cent of the county highways are surfaced, and 27 per cent of the township highways are improved with gravel surface or a higher type. The surfaced local mileage for the United States as a whole in 1930 was hut 17.5 per cent of the total.
It must be recognized that the county roads, on which 39 per cent of the traffic is of local (i. e. township) origin, render services, both social and economic, which can not be computed in terms of reduced transportation costs. However, there is a definite indication of overexpenditure; and plans for further development of the county system should take into account the extent to which the traffic justifies the outlay.

LOW TRAFFIC DENSITIES FOUND ON TOWNSHIP ROADS
Table 9 shows that the expenditures on the township roads in 1930-31 amounted to 1.29 cents per vehicle mile: This figure can not very well be compared with reduction in cost of motor vehicle operation. Seventythree per cent of the township mileage is unimproved,
and corresponds to ordinary earth road, the lowest type considered in Professor Agg's figures, quoted above. It is doubtful if the expenditures on township roads could be said to produce a reduction of more than one-half cent per vehicle-mile in transportation costs.

The great bulk of expenditures on these roads is for maintenance, nearly all in the case of the unimproved roads. Keliable information as to the actual maintenance cost of township highways is difficult to obtain and but little has been written about this phase of highway economics.

Dividing the expenditure on township roads, as given in Table 8, $\$ 6,264,384$, by the total mileage in the system, 60,214 , we obtain $\$ 104$ as the average expenditure per mile. This figure includes construction as well as maintenance costs. Township highway expenditures for the year 1930 were obtained from the State authorities for 78 townships. The reported expenditures for all these townships also averaged $\$ 104$ per mile. The figures raried from very low values to orer $\$ 500$ per mile. Those townships in which the township highways were all unimproved (except for 1 mile) reported an average expenditure of $\$ 51$ per mile. This figure is very near the minimum which could be expended with profit in maintaining an unimproved road.

The observed average daily traffic on township roads varied from less than one to 279 vehicles per day, the average being 22, and the median 20. Table 10 shows a percentage distribution of those township

Table 10--Cumulative percentage of observed township mileage having traffic densities from 1 to 279 vehicles per day and corresponding mileages computed by applying these percentages to the total of lounship highuay mileage in the State

Average daily traffic density	Percentage of observed township mileage	Corresponding mileage based on all township mileage in State	A verage daily traffic density	Percentage of observed township mileage	Corresponding mileage based on all township mileage in State
5 or less.	13. 58	8,177	40 or less	80.45	48, 442
10 or less	25. 51	15,361	45 or less	86.09	51, 838
15 or less	39.58	23,833	50 or less	88. 46	53, 265
20 or less	51.90	31, 251	75 or less	95.97	57, 787
25 or less.	63. 16	38, 031	100 or less	97.93	58, 968
30 or less.	70.73	42,589	150 or less	99.11	59, 678
35 or less.	76. 65	46, 154	279 or less	100.00	60, 214

highways on which observations were made, on the basis of traffic density. The corresponding mileages, based on all the township mileage in the State, are also given. Thus we see that over half the mileage supports a traffic of 20 vehicles per day or less; about one-fourth has a traffic of 10 or less; and on nearly 14 per cent, or over 8,000 miles, the traffic is no more than 5 vehicles per day. If we apply the maintenance figure of $\$ 51$ per mile to some of these low densities we obtain the following figures:

Expenditures per vehicle-mile

Vehicles per day:	Cents
13.	13. 97
10	

To set a limit, in terms of cents per vehicle-mile, on the expenditures to be made on such roads, would be an
arbitrary procedure. It is clear, however, that a traffic of $1,5,10$, or even more vehicles per day is insufficient for the reduction in transportation costs to pay the cost of maintenance. There are considerations more or less intangible which may justify high expenditures per vehicle-mile on very lightly traveled township roads. The State may be said to have a certain obligation, in connection with public education and the general welfare, to provide access to the land and homes of its citizens. This principle can not, of course, be pushed to the limit of building a road to the remotest habitation. The obligation exists none the less; and it would be well to recognize that a considerable portion of the expenditure on local roads must be justified by the general social and economic benefits to be derived.

APPENDIX

Method of determining local Trafeic in michigan cities

The use of city streets by residents and nonresidents was determined for the seven cities of Detroit, Grand Rapids, Flint, Lansing, Jackson, Ann Arbor, and Niles. These cities are representative of the population range from 10,000 to more than $1,500,000$ and data obtained in them are applicable to other Michigan citics within this range.

Forty-three per cent of the passenger cars and 36 per cent of the trucks registered in Michigan in 1930 were registered in these seven cities. Their population in 1930 was 43 per cent of the population of the State, 57 per cent of the population of the 475 incorporated places in Michigan, and 63 per cent of the urban population of Michigan. Within these cities were 71 per cent of the registered motor vehicles of all cities with a population of 10,000 or over in 1930 , and 70 per cent of the population of such cities.

A typical distribution of traffic stations is illustrated in the map of Flint, Figure 1. The stations are well distributed throughout the city and are sufficient in number to obtain data relative to all traffic movements within the city. All important sources of traffic were covered by stations. The trunk lines passing through Flint are shown by heavy lines on the map. The distribution of stations is similar to that in all of the cities except Detroit. In that city traffic stations were located on three cordons.

The inner cordon covered all intersections on Grand Boulevard; the middle cordon was on Artillery, Livernois, Davison, Six Mile Road, and Comners Streets; the outer cordon was on Eight Mile Road and at the crossings of the River Rouge near the east city limits. One hundred and sixty-four stations were located on these three cordons at points used by the Rapid Transit Commission in their study of vehicular traffic.

Traffic counts were taken in the seven cities during the month of August, 1931. Vehicles were classified as local, nonlocal, or non-Michigan. Local traffic was identified through the registration numbers assigned for cars of each city by the State Motor Vehicle Director. The correctness of such classification Was checked by noting the license numbers and determining the domicile of the owner, in order to eliminate from the local classification those vehicles whose owners bought tags in the city but who were not domiciled within the city limits.

Where the volume of traffic was not too heavy all cars were classified and the domicile of the owner determined. Where this could not be done, as many license numbers as possible were noted and later classified. About one in each three license numbers was taken for investigation upon each route at a station.

A certain percentage of apparent local traffic (i. e., vehicles carrying tag numbers assigned to the city of observation) was found to be of nonlocal origin. This percentage was applied to each original count of vehicles and the traffic of true local origin determined. For example, at station 27 in Grand Rapids 1,551 ears with apparent local tags were noted on the north route at the intersection of Ionia Ivenme and Crescent street on Monday, August 24, during the hours from 10 a. m. to \& p. m. Examination disclosed that 137 , or S. S per cent of these cars were owned outside of Grand Rapids. The vehicle count on this route totaled 3,492 apparent local cars. Subtracting 307 or 8.8 per cent of the count gave 3,185 local vehicles. The 307 su deducted were added to the nonlocal classification.

Population and type of traffic.-The ratio of local traffic to total traffic ordinarily increases with population. In Figure 2

Figure 1.-Map Showing Locations of Traffic Stations in City of Flint, Mich.
the percentage of local traffic (determined by weighting percentages on through and nonthrough streets by mileage in each class) is plotted against population and a trend line drawn. With the exception of Jackson and Lansing, it is apparent that the larger the city the greater the percentage of local traffic. After a population of 180,000 is reached, the effect of increases in population upon the percentage of local traffic is very small. Detroit with nearly nine times the population of Grand Rapids, had but
a slightly higher percentage of local traffic, although the volume of Detroit traffic is several times that of Grand Rapids.

Through street mileage and type of traffic.-Since the data for Jackson and Lansing do not agree with the population-local traffic trend, and because there are other cities of about this size for which traffic data were not taken, another method was developed as a check and a modifier of the results obtained by considering population and percentage of local traffic. This was

Figure 2.-Relationship Between Local Traffic on City Streets and Population of Cities; Percentage of Local Traffic Determined by Weighting PercentAges on Through and Nonthrough Streets
done by plotting the ratio of through street mileage to total mileage for each city against the percentage of local traffic observed in each of the seven cities. There is an inverse relationship between these two factors as shown in Figure 3.

With a trend line through the points thus obtained, it is possible to determine the percentage of local traffic for any city if its ratio of through street mileage to total mileage is known, thus enabling close estimates of percentage of local traffic in those cities where no traffic data were obtained.

The average percentage of local traffic for a number of cities combined, when derived by both methods, varies only slightly. From consideration of data from the seven cities studied it appears that the relationship of percentage of through street mileage to local traffic provides an excellent check upon the population-local traffic relationship, and that it may be a better measure of local traffic in the individual city.

Although Jackson and Lansing diverge from the populationlocal traffic trend in the percentage of through street mileagelocal traffic relationship, they are on or very near the trend line, but in reverse order. In Figure 3 Grand Rapids and Detroit are farthest from the trend line and on opposite sides. Grand Rapids has an unusual number of parallel through streets. More Streets in Detroit might properly be included in the throughstreet mileage (thus bringing this city closer to the trend line), but were not so included in conformance with the definition of through routes. There is also the fact that in Detroit through streets are much wider than local streets, so that the area of through-street mileage and that of local-street mileage is more nearly in proportion to that of the other cities.

Local traffic in Detroit and adjacent cities.-As previously noted, the traffic stations in Detroit were located on three cordons. These cordons were located at about 3, 6 , and 8 miles from the center of the city.

Table 1 gives detailed figures for local traffic on each cordon as well as for each section of the cordons. The percentage of local traffic at each cordon was as follows: Inner, 81.2 ; middle, 81; and outer, 65.8. The observed local traffic at all cordons combined was 79.9 per cent.

Table 1.-Local traffic at Detroit cordons

Section	Inner cordon		Middle cordon		Outer cordon	
	North and South	$\begin{aligned} & \text { East } \\ & \text { and } \\ & \text { West } \end{aligned}$	$\begin{aligned} & \text { North } \\ & \text { and } \\ & \text { South } \end{aligned}$	East and West	North and South	East and West
East side.. North side West side..	$\left.\begin{array}{\|r\|} \text { Per cent } \\ 81.0 \\ 83.0 \\ 79.2 \end{array} \right\rvert\,$	$\begin{gathered} \text { Per cent } \\ 84.8 \\ 81.0 \\ 80.0 \end{gathered}$	Per cent 83.3 77.6 82.3	Per cent 84.2 81.9 78.2	$\begin{array}{\|r\|} \text { Per cent } \\ 77.7 \\ 61.7 \end{array}$	$\begin{array}{r} \text { Per cent } \\ 7.1 \\ 64.6 \\ 58.8 \end{array}$
Total.	81.2		81.0		65.8	

The traffic of cities within and surrounding Detroit differs from that of an average city of similar size located at a distance from a large city. Hamtramck and Highland Park are within the corporate limits, but are not a part of Detroit. Local traffic in these places is similar to that of Detroit considering the entire area as a unit. Several of the Detroit traffic stations on the middle cordon were located in Highland Park. The counts at these stations showed that Detroit accounted for 77.4 per cent of the traffic, and 2.6 per cent originated outside of the State. Only 20 per cent was originated in Highland Park and the rest of Michigan outside of Detroit.

The population-local traffic relationship indicates a percentage of local traffic for Highland Park of less than two-thirds that of Detroit, while the percentage of through street mileage-
local traffic relationship indicates a percentage of local traffic a little less than that of Detroit. Either method indicates a figure several times the observed local traffic. It is only logical to expect local traffic in Hamtramck and Highland Park to be very much like, if not identical with, that of Detroit if all three were combined as a metropolitan area.

Combining all these suburban places into one area and treating them as a Detroit metropolitan area brings the whole in nearer agreement to the trend line of Figure 2.

Method of estimating local traffic in all cities of State.-In arriving at estimates of the average percentage of local traffic in Michigan cities the two methods previously explained were used. The percentage of local traffic in the cities of the survey, when determined by population ratios, by ratio of through street mileage to total mileage, and by actual count, is not always the same, as will be seen by referring to Figures 2 and 3. Location of a town or city on heavily traveled through routes near a large city, or some other determining factor for the particular city, may be of great importance in arriving at the correct percentage of local traffic for a city. The heavy traffic on through routes passing through a small town lowers the ratio of local traffic to total traffic to a very low figure as compared with that of a town of the same size not on a through route, or on a through route with a much lower volume of traffic.

Figure 3.-Relationship Between Local Traffic on City Streets and Mileage of Through Streets; Percentage of Local Traffic Determined by Weighting Percentages on Through and Nonthrough Streets by Mileage in Each Class

Since no towns or cities under 10,000 population were included in the cities surveyed, an estimate of local and nonlocal traffic for these can be made on the basis of the trend line of Figure 2 extended or the ratio of through street mileage to total mileage as scaled from maps.
However, in the application of the through-street percentage relationship to small towns, it seems reasonable to include county routes which enter the town as connections with State or Federalaid routes in the through-street mileage. It appears that county routes leading into small towns have about the same effect upon local traffic as have State routes entering larger cities. In fact, some towns have no State routes passing through them, so it is necessary to use county routes.
Whatever the method used to determine the percentage of local traffic in places under 10,000 population, it will have little effect on the mean local traffic for all Michigan cities combined. Including all incorporated places under 10,000 population, however small, the average percentage of local traffic for these would have to vary more than 10 per cent to affect the mean local traffic of all Michigan cities combined by as much as 2 per cent.
If all incorporated places under 10,000 population had been included in the city survey, it is doubtful if the combined average would vary materially from an average arrived at by use of either the population or through-street percentage relationships to local traffic.

Local traffic at single stations on through routes varies from 8 to 54 per cent for towns and cities of varying sizes under 10,000 population. One town under 1,000 population had 14 per cent local traffic on two intersecting streets combined but on one of these streets the local traffic was 43 per cent. The other street was a heavily traveled through route which greatly reduced the average for both streets.
In estimating the percentage of local traffic in towns and cities under 10,000 population, all of these cities were considered as an average city within the group. Also, sample towns were con-

MOTOR TOURIST TRAFFIC IN MICHIGAN

By the Bureau of Public Roads, United States Department of Agriculture, and the Michigan Highway Department

THE following analysis of motor tourist traffic is based upon post-card questionnaires distributed during the course of a traffic survey extending from July, 1930, to July, 1931. A sample card is shown in Figure 1. More than 42,000 of these cards were returned, and all sections of the State are represented.
central plains States. plains States, more

Of the traffic from the central than one-third originates in Minnesota

A classification of tourist cars by type of accommodation, Table 2, indicates that more than one-third of the total number of visitors stayed with friends, nearly

Figure 1.-Card Distributed to Tourists in Michigan

All operators of foreign cars were given cards at stations near the border but since stations were not operated continuously the operators stopped at stations in the interior of the State and found to be without such a card were given one. The information upon these cards, supplemented by special data obtained at the Ambassador Bridge, the Detroit-Windsor Tunnel, and all ferries, furnished data with regard to tourist and Canadian traffic movements.

The origin of tourist cars is summarized in Table 1, and also in Figure 2, in which the percentage of tourist

Table 1.-Origin of tourist traffic in Michigan during 1930-31, as indicated by questionnaire cards

State, country, or group	Number of cards returned	Percentage of total
Wisconsin.	2,528	6. 0
Illinois -	13,608	32.5
Indiana. Ohio...	8,115 8,942	19.4 21.4
Canada	1,168	2.8
Total, neighboring States and Canada	34,361	82.1
New England States.	410	1.0
Northeastern States.-	2,382	5.7
Southeastern States	992	2.4
Central States..-	2,823	6.7
Western States	901	2.1
Total	41,869	100.0

traffic originating in the areas indicated is proportional to the area of the circle in each case. Most of this traffic originates in the States adjoining Michigan and in Canada, this area contributing 82.1 per cent of the total tourist traffic. The remaining 18 per cent originates in all parts of the United States, the bulk of it coming from the northeastern States and from the

24 per cent at hotels, and more than 19 per cent at summer homes. These three important groups comprise four-fifths of the total. More than half of the remainder proceeded directly through the State, making no overnight stops. Camping parties represent only 6 per cent of the total, and the miscellaneous group, those cars which could not be conveniently classified under any of the above types, 4 per cent.

The average number of persons per car in all tourist cars was 2.8. More than one-half of the total cars carried 1 or 2 persons and nearly 70 per cent carried 1, 2, or 3 persons. Every sixth car carried four persons, but the number of cars carrying five or more persons was only a small part of the total.

Table 2.- Distribution of tourist cars by type of accommodation

Type	Number of cars	Number of cars as percentage of total	Number of persons	Number of persons as percentage of total
Friends.	14,094	33. 53	43,638	36. 84
Hotels	12,348	29. 38	27, 493	23.64
Summer home ${ }^{1}$	7,622	18. 13	23, 232	19.61
Through traffic.	4, 021	9.57	11,793	9. 96
Camping ${ }^{2}$--	2, 236	5. 32	7,095	5. 99
Miscellaneous ${ }^{3}$	1,712	4.07	4,694	3. 96
Total.	42, 033	100.00	118, 451	100.00

1 "Summer home" includes all cars where possession of a summer home was indicated, on the assumption that other types of accommodation were used only inci dentally in going to and from the summer home.
${ }^{2}$ Includes camping and friends.
${ }^{3}$ Miscellaneous includes cars unclassified according to type, and the minor groups: Hotels and camps; hotels and friends; and, hotels, camps, and friends.
The average length of stay for all classes of tourists is 11 days per party. It ranges from one day, reported by one car in every five, to more than six months. The
greatest number of visits are of short duration. Nearly 40 per cent of all parties stayed two days or less, while risits of one week or less were made by nearly threefourths of all parties. Table 3 gives the length of stay of tourist cars, in percentages distributed by type of accommodation used.

There is naturally a considerable difference in the average length of stay of the various types of tourists, ranging from 7.5 days for those staying with friends, to 24 days for those using their own summer homes. The arerage stay for those staying at hotels is 8.2 days, and that for campers is 10.6 days.

Table 3.-Length of stay of tourist cars in percentages distributed by type of accommodation used

STAY IN MONTHS

$\begin{aligned} & 1 \text { to } 2 \ldots \\ & 2 \text { to } 3 \\ & 3 \text { to } 4 \\ & 4 \text { to } 5 \\ & 5 \text { to } 6 \\ & 6 \text { to } 12 \end{aligned}$	3.4 1.3 .9 .1 .8	$\begin{array}{r} 3.9 \\ 1.3 \\ .8 \\ .1 \\ -.2 \end{array}$	$\begin{array}{r} 6.9 \\ 10.4 \\ 8.3 \\ 1.4 \\ .4 \\ .6 \end{array}$	$\begin{array}{r} 5.1 \\ 2.7 \\ 1.1 \\ .2 \\ -\quad . \end{array}$	$\begin{array}{r} 6.3 \\ 3.2 \\ 1.6 \\ .1 \\ .2 \\ 1.2 \end{array}$	4.3 3.1 2.2 .3 .1 .3
Total.	100.0	100.0	100.0	100.0	100.0	100.0
Average (days) Median (days)	$\begin{aligned} & 7.5 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 3.9 \end{aligned}$	$\begin{array}{r} 24.0 \\ 4.5 \end{array}$	10.6 5.5	14.7 6.6	11.0 3.9

ESTIMATE OF TOURIST EXPENDITURES

The information concerning length of stay, type of accommodation, and average number of passengers may be applied to the total incoming tourist traffic to estimate the value of this traffic in terms of expenditures within the State. However, the accuracy of such an estimate depends primarily on the estimate of the average expenditure per tourist per day, and very little accurate data ${ }^{1}$ has been collected on this point. The final estimate here given is regarded merely as an indication of total tourist expenditures, but conservative figures have been used throughout and it is, therefore, probable that the actual expenditure is greater than the estimate.

As the cost of car operation is an item of expense for all types of motor tourists, it is convenient to assume an average cost per mile and apply this figure in the estimate for each type. The following estimate of

[^2]car-operation costs is based upon the assumption that the average tourist car is a light 6 -cyclinder model. Cars of this type were used by recorders and supervisors in the survey, and the following unit costs are, therefore, taken directly from the cost records of these cars:

$\begin{array}{llr}\text { Average miles per gallon of gasoline.-----.......-- -- -- } & 17 \\ \text { Average miles per quart of oil } & 100\end{array}$
Average miles per quart of oil.-.100

Average cost per quart of oil. 27

Cost of oil per mile 003

Total cost of operation per mile
018

Figure 2.-Origins of Motor Tourist Traffic in Michigan. Size of Circle Indicates Relative Number of Tourists from Each Area
This figure of $\$ 0.02$ per mile may appear to be too conservative, but it should be remembered that it represents only direct operation expenditures which would be made in Michigan during a visit. Indirect costs such as depreciation, license fees, etc., are not considered.

Table 4 is an itemized estimate of the daily expenditures per person for the six tourist types. The estimate for the summer-home group is based upon an assumed average home value of $\$ 3,000$, upon which carrying charges and all operating costs on a yearly basis will approximate 10 per cent of the value, or $\$ 300$. This expenditure is charged against a season of 100 days, resulting in the equivalent of a rental value of $\$ 3$ per day, or $\$ 1$ per day per person for a party of three.

Table 4.-Itemized estimate of expenditures per person per day for various types of tourists

Items						
Average number of persons per party	3.1	2.3	3. 1	3.2	2.9	
Average daily miles per car	50	100			${ }^{2} 120$	
Cost of car operation at $\$ 0.02$ per mile	\$1.00	\$2.00	\$1.00	\$2.00	\$2. 40	
Cost of garaging .-...........-.						
Total car operation cost per day	1.00	2. 75.	1. 00	2. 00	2. 40	
Cost of car operation per person per	. 32	1.20	. 32	. 62	. 83	
Cost of lodging per person per day.		${ }^{3}$ 2. 70	+1.00	. 75		
Cost of food per person per day.	75	2. 25	. 75	1. 00	1.50	
Miscellaneous costs per person per day		1. 50		1. 00	. 50	
Total expenditures per person per day	1.82	7. 65	2. 82	3.37	2.83	53.70

[^3]The average daily mileages per car given in Table 4 were estimated, except in the case of the cars passing through the State, for which the average obtained from the questionnaires was used. The questionnaire averages in general refer to daily mileages while touring, and are not representative of the daily travel of parties making an extended stay in the State. The estimates used represent an attempt to allow for both the trip mileage in and out of the State, and the daily use of the vehicle during the sojourn.

The average daily volume of foreign cars at selected border stations was used in computing the total yearly volume of tourist traffic. A considerable portion of foreign traffic near the border is an "over-theline" movement of cars for business purposes, and it was necessary to apply an appropriate correction at each station to eliminate this traffic. The proportion of cars staying one day or less from the State immediately adjacent to each station as obtained from the questionnaire cards was considered a reliable indication of this business traffic. These proportions were accordingly applied to the total foreign traffic at each station under consideration and the remainder was assumed to represent the true volume of tourist traffic, shown in column six of Table 5. The total daily

Table 5.-Estimate of automobile tourist traffic per year

$\mathrm{S}_{\text {Sta- }}^{\text {tion }}$	Route	Direction	Daily passenger cars	$\begin{aligned} & \text { Reduc- } \\ & \text { tion } \\ & \text { fictor } \end{aligned}$	
$\begin{array}{r} 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 6 \\ 6 \\ 7 \\ 8 \\ 249 \\ 250 \\ 251 \\ 260 \\ 280 \\ 320 \\ 321 \\ 351 \\ 355 \\ 372 \\ 410 \\ 412 \\ 468 \\ \hline 474 \\ 519 \\ 521 \\ 522 \\ 538 \\ 539 \\ 540 \\ 541 \\ 653 \\ 6545 \\ 6558 \\ 838 \end{array}$	Ferry		869	0.96	
			657	. 87	571
	- do		771	86	611
	-do		19	1. 00	176 6
	do-		4 234	1. ${ }^{7} 8$	4
	do-		234 94	. 78	$\begin{array}{r}182 \\ 80 \\ \hline\end{array}$
	US ${ }^{12}$	N. and S	2,546	. 71	1,808
	UR ${ }^{\text {UR }}$	N. and S	1,976	. 67	1, 81
	US 27			81	${ }^{326}$
	US 112	W.	851 173	. 76	647 161
	US 141		291	84	244
	US 2	E. and	197 62	. 94	$\begin{array}{r}185 \\ 55 \\ \hline\end{array}$
	M 26.	N. and ${ }^{\text {S }}$	${ }_{82}^{62}$:87	${ }_{71}^{55}$
	M 34		58 45	. 82	48
	US 2		${ }_{76}^{45}$	1. 92	${ }_{76}^{41}$
	M 34		53	. 91	48
	CR			91	${ }_{91}^{33}$
	${ }_{\text {OR }}$	W	13	92	12
	M 35		108	1.00	108
	US 223		1,127	80	${ }_{8}^{676}$
	US 24.	N . and S	2, 212		
	US 25	N. and S	1,795	88	1,580
	TR 131		20	. 82	16
			593 7	.85	504 6
	CR		9	1. 00	${ }_{9}$
	Total per day-				
	$\begin{aligned} & \text { Incoming per d } \\ & \text { Incoming per y } \end{aligned}$				$\begin{array}{r} 6,850 \\ 2,500,250 \end{array}$

volume of tourist traffic at all border stations was 13,700 cars per day and represents both incoming and outgoing cars. One-half of the above total, or 6,850 cars per day, may be considered as incoming tourist cars, or $2,500,000$ cars per year.

In Table 6 the estimated expenditures of the various types of tourists and the percentage of each type are applied to the total incoming traffic to obtain the total expenditures for each type. The total expenditures of all motor tourists were approximately $\$ 274,000,000$. While this estimate is admittedly an approximation,

Table 6.-Estimated yearly tourist expenditures by types

Type	Persondays per car	Expenditures per personday	Expenditures per car per visit	Cars entering per year	Expenditures per year
Friends Hotels Summer home. Camping Through. Miscellaneous	22.1	\$1. 82			\$33, 700 ,
	17.5	7.65	133.88	735, 000	98, 400, 000
	77.6	2.82	218. 83	452, 500	$99,000,000$
	31.6	3. 37	106. 49	240, 000	$25,600,000$
	3. 0	2. 83	8. 49	132, 500	1,100,000
	43.0	3. 70	159. 10	102,500	16, 300,000
	31.6	3. 47	109.64	2,500,000	$274,100,000$

${ }^{1}$ Since unit expenditures were estimated on a person-per-day basis, length of stay is expressed in the unit "person-days" for purposes of computation. It does not correspond exactly to the figure obtained by multiplying the average number of persons per car by the average stay per car because the average number of persons per car varies by length of stay as well as by type.
it serves to impress the tremendous value of this traffic to the State. Total foreign vehicle-mileage indicates a consumption by foreign cars of more than $30,000,000$ gallons of gasoline, and gasoline taxes paid by owners of foreign vehicles amounts to more than $\$ 900,000$ annually.

Of equal if not greater importance than the total expenditures of motor tourists is the relation between the volume of each type of tourist traffic and the expenditures of that group. Tourists owning their own summer homes, representing only 18.1 per cent of the total tourist traffic, are responsible for 36.1 per cent of the total tourist expenditures, more than any other group. Furthermore, the expenditures per visit of this class are considerably greater than that of any other, and the advantage of endeavoring to increase the number of this kind of tourists is apparent. Only slightly less valuable is the hotel visitor. The group using hotels forms 29.4 per cent of the total traffic, but spends $\$ 98,400,000$ per year, nearly 36 per cent of the total. These two groups, comprising slightly less than one-half of the traffic spend nearly three-fourths of the total expenditures.

These relationships between volume of traffic and expenditures for the various types of tourists are shown in Figure 3.

There is an important interchange of traffic along the Canadian border, but what might be termed the "balance of tourist trade" is heavily in favor of Canada, considerably more cars bearing Michigan tags or those of other States entering Canada than enter Michigan with Canadian tags. At eight ferries and bridges there was an average passenger car volume of 9,696 per day. Michigan cars constituted 71.4 per cent of the total, cars from other States, 9.0 per cent, and Canadian cars, 19.6 per cent, as shown in Table 7.

The greatest volume of this traffic naturally occurs between Detroit and Windsor, the Ambassador Bridge carrying an average of 3,255 cars per day; the Bates Street Tunnel, 2,141; the Windsor Ferry, 2,504 ; and the Walkerville Ferry, 986. The largest part of this traffic is probably an exchange of business traffic between Detroit and Windsor, but there is a very considerable volume of tourist traffic, as indicated by the volume of traffic at these points from other States. Detroit is a convenient point of entry into Canada for tourists from the United States because it is the terminus of main highways from Chicago and Toledo, while Windsor is the terminus of a popular route from Niagara Falls.
Table 7.-Density of traffic at bridges and ferries connecting with Canada

$$
1 \text { Less than one car per day. }
$$

Traffic of Canadian cars between Detroit and Windsor aggregates 1,683 per day, nearly one-fifth of the total, and card returns indicate that about 50 per cent of this volume is tourist traffic.
Traffic at other points along the Canadian border is very much lighter than at Detroit, although there is a considerable volume at Port Huron and Sault Ste. Marie. The Port Huron Ferry carries an average of 588 passenger cars per day- 60.2 per cent being Michigan cars, 12.9 per cent from other States, and 26.9 per cent from Canada. The ferry at Sault Ste. Marie carries an average daily traffic of 169 cars- 44.4 per cent of which are from Michigan, 27.2 per cent from other States, and 28.4 per cent from Canada. The ferries at Port Lambton and St. Clair are not on main routes, and, in consequence, carry a relatively small volume of traffic.

> (Continued from p. 196)
sidered in connection with the through-street-mileage relationship. Studying all available data the typical city for the group
under 10,000 population was estimated to have 43 per cent local traffic.

Table 2 presents the data on city traffic of local origin for all cities in Michigan. Detroit is listed separately in the table because of its size and effect upon any average. The other six sample cities are listed next and in combination with Detroit. Then follows the data for group 1 and group 2 cities. Group 1 cities are those for which street mileage data, as well as population, are available. Group 2 cities are those with more than 10,000 population, but for which the mileage data are lacking. These are followed by the large group of towns and cities under 10,000 population.

The procedure used in combining the results in the Michigan cities was as follows: (1) Field data for the seven sample cities were summarized; (2) percentage of local traffic determined by the population-local traffic relationship; (3) percentage of local traffic determined by the use of through street percentage-local traffic relationship; (4) a final average secured by a combination of the results of 2 and 1, and 3 and 1, using the weighted average for each.

Table 2.-Percentage of traffic of local origin in all Michigan cities

City group	Population	Weighted average percentage of local traffic, as determined by-	
		Population of city	Mileage of through streets
Detroit ${ }^{1}$	1,569,000	$\begin{array}{r} \text { Per cent } \\ 80.9 \end{array}$	Per cent 80.9
Six other cities of survey ${ }^{1}$	496, 000	76.1	76.1
Seven cities of survey combined	2, 065, 000	79.7	79.7
Cities over 10,000, group 1	572, 000	64.8	65.6
Cities over 10,000, group 2	296,000	64.1	264.5
All cities over 10,000 combined	2, 933, 000	75.2	75.4
Cities under 10.000^{3}	663,000	43.0	43.0
All Michigan cities	3, 596, 000	69.3	69.5

[^4]The percentages of local traffic in the third column of Table 2 are either the weighted averages obtained from field observations, or are obtained from the data of Figure 2. These percentages are weighted by the population of the city or group of cities to give an average of 69.3 per cent local traffic. The percentages of the last column are those obtained from the field data or from the data of Figure 3 and are again weighted by population to give a combined figure of 69.5 per cent local traffic in the cities of Michigan as a whole.

The differences in the final percentages obtained are slight, the figures varying from 69.3 to 69.5 per cent local traffic for the State as a whole. Since the weighted average for traffic of city origin probably best represents the actual condition, and since the unweighted averages vary little from the above figures, the final percentage of local traffic for all incorporated places in Michigan is estimated to be 69 per cent of the total traffic of these cities.

CORRECTION

Vol. 13, No. 10, December, 1932.-In the article entitled "The Problem of Motor Vehicle Regulation," Appendix B, page 168, the following note was included under the heading "Remarks," and appeared opposite the entries for the State of Maine:
Truck tractor, 4 -wheel semi and 6 -wheel full trailer, maximum gross 80,000 pounds. No combination including more than 1 semitrailer or full trailer may be operated at more than 10 miles per hour.
The note should be read to apply to the State of Maryland.

ROAD PUBLICATIONS of the BUREAU OF PUBLIC ROADS

Any of the following publications may be purchased from the Superintendent of Documents, Government Printing Office, Washington, D. C. As his office is not connected with the department and as the department does not sell publications, please send no remittance to the United States Department of Agriculture.

ANNUAL REPORTS

Report of the Chief of the Bureau of Public Roads, 1924. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1925. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1926. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1927. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1928. 5 cents.
Report of the Chief of the Bureau of Public Roads, 1929. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1930. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1931. 10 cents.
Report of the Chief of the Bureau of Public Roads, 1932. 10 cents.

DEPARTMENT BULLETINS

No. 136D . . Highway Bonds. 20 cents.
No. 347D . . Methods for the Determination of the Physical Properties of Road-Building Rock. 10 cents.
No. 532D . . The Expansion and Contraction of Concrete and Concrete Roads. 10 cents.
No. 583D . . Reports on Experimental Convict Road Camp, Fulton County, Ga. 25 cents.
No. 660D . . Highway Cost Keeping. 10 cents.
No. 1279D . . Rural Highway Mileage, Income, and Expenditures, 1921 and 1922. 15 cents.
No. 1486D . . Highway Bridge Location. 15 cents.

TECHNICAL BULLETINS

No. 55 T . . Highway Bridge Surveys. 20 cents.
No. 265 T . . Electrical Equipment on Movable Bridges. 35 cents.

MISCELLANEOUS CIRCULARS

No. 62MC . $\begin{aligned} & \text { Standards Governing Plans, Specifications, } \\ & \text { Contract Forms, and Estimates for Federal- } \\ & \text { Aid Highway Projects. } 5 \text { cents. }\end{aligned}$
No. 109 MC . . Federal Legislation and Regulations Relating to the Improvement of Federal-Aid Roads and National-Forest Roads and Trails, Flood Relief, and Miscellaneous Matters. 10 cents.

MISCELLANEOUS PUBLICATION

No. 76 MP . . The results of Physical Tests of Road-Build. ing Rock. 25 cents.

REPRINT FROM PUBLIC ROADS

Reports on Subgrade Soil Studies. 40 cents.

Single copies of the following publications may be obtained from the Bureau of Public Roads upon request. They can not be purchased from the Superintendent of Documents.

SEPARATE REPRINT FROM THE YEARBOOK

No. 1036Y . . Road Work on Farm Outlets Needs Skill and Right Equipment.

TRANSPORTATION SURVEY REPORTS

Report of a Survey of Transportation on the State Highway System of Ohio. (1927.)
Report of a Survey of Transportation on the State Highways of Vermont. (1927.)

Report of a Survey of Transportation on the State Highways of New Hampshire. (1927.)

Report of a Plan of Highway Improvement in the Regional Area of Cleveland, Ohio. (1928.)
Report of a Survey of Transportation on the State Highways of Pennsylvania. (1928.)
Report of a Survey of Traffic on the Federal-Aid Highway Systems of Eleven Western States. (1930.)

A complete list of the publications of the Bureau of Public Roads, classified according to subject and including the more important articles in Public Roads was printed in Public Roads, vol. 13, No. 3, May 1932. Copies of this list may be obtained upon request addressed to the U. S. Bureau of Public Roads, Willard Building, Washington, D. C.

[^0]: ${ }^{1}$ Includes vehicles classified as "State" and "Foreign."

[^1]: 1 Based on Table 7.

[^2]: 1 Most of the estimates of the value of tourist traffic have been made by tourist associations and automobile clubs. In the majority of cases, the estimates are based frankly upon guesses as to the average expenditure per person per day. Several studies of considerable merit have been made by means of questionnaires and wherever possible the following estimates of expenditures by the various types of tourists
 have been checked against these studies.

[^3]: 1 A verages obtained from questionnaires.
 ${ }^{2}$ A verage obtained from questionnaires. All other daily mileages are estimates, as the averages obtained from the questionnaires are not considered representative averages for daily mileage for the entire length of stay.
 ${ }^{3}$ Based on an assumed cost of $\$ 4$ per day for one person; $\$ 5$ per day for two persons; and reduced to a unit cost for a party of 2.3 persons.

 - Based on an average rental value of $\$ 3$ per day for a period of 100 days

 5 Arithmetic average of the expenditures for all other types

[^4]: Actual percentages, from field data.
 ${ }^{2}$ Estimated from group 1 cities.
 ${ }^{3}$ Estimate determined by use of both population and through street mileage.

